Source code for blenderneuron.client

import blenderneuron

    import xmlrpclib
    import xmlrpc.client as xmlrpclib

import threading, time, hashlib
from math import sqrt
import collections

"""NEURON-based client library for BlenderNEURON"""

[docs]class BlenderNEURON(object): """The BlenderNEURON client class, which sends commands to the server created by the BlenderNEURON Blender add-on"""
[docs] def __init__(self, h=None, ip='', port='8000', show_panel=True, show_tutorial=True): """ Creates an XMLRCP client which will communicate with the server, shows the GUI panel, and the tutorial :param h: an optional NEURON "h" variable. If not passed in, the method will load NEURON automatically :param ip: the IP address of the machine where the Addon will listen to client commands. Localhost by default. If another machine is specified, make sure any firewalls allow communication. However, this may create a potential security issue as the port could be used to execute arbitrary commands while Blender is running. See: :any:`run_command()` :param port: the port of the machine where the Addon will listen to :param show_panel: Shows the GUI window :param show_tutorial: Shows a short tutorial for how to use the client """ if h is not None: self.h = h else: from neuron import h, gui self.h = h self.IP = ip self.Port = str(port) self.client = xmlrpclib.ServerProxy('http://'+ip+':'+port, allow_none=True) self.progress_client = xmlrpclib.ServerProxy('http://' + ip + ':' + port) self.activity_simplification_tolerance = 0.32 # mV # Example groups: # blender.groups = { # "earth": { cells: [h.Cell[0].soma], color_level = 'Segment', interaction_level = 'Segment', collection_period_ms = 0.1, res_u, res_v, as_lines, color, smooth_sections}, # "pluto": { cells: [root2,3,4], color_level = 'Section', interaction_level = 'Section', collection_period_ms = 1}, # "alphaC": { cells: [root5,6,7,8,9,10], color_level = 'Cell', interaction_level = 'Cell', collection_period_ms = 3}, # "andromeda": { cells: [root11-1000], color_level = 'Group', interaction_level = 'Group', collection_period_ms = 5} # } self.groups = {} # Example connections: # blender.conenctions = [h.NetCon[0], h.NetCon[1]] self.connections = [] self.connection_data = {} self.clear_activity() # Clear previously recorded activity on self.fih = self.h.FInitializeHandler(self.clear_activity) # self.progressNEURON = self.h.ref('0.0') # self.progressBlender = self.h.ref('0.0') # self.progressPercent = self.h.ref('0.0') self.connectionStatus = self.h.ref('---') self.include_morphology = True self.include_connections = True self.include_activity = True if show_panel: self.show_panel() if show_tutorial: print("") print("-== NEURON python module of BlenderNEURON is ready ==-") print(" It will send commands to Blender at the following address:" + self.IP + ":" + self.Port) print(" If you haven't already, start Blender with BlenderNEURON addon installed") print(" The address on the addon's tab in Blender should match the above IP and Port.") print("") print(" In python console, type: bn.is_blender_ready() to check if connection to Blender can be established.") print("") print(" To visualize a model in Blender: ") print(" 1) Load it in NEURON. Graph > Shape plot should show active cell morphology.") print(" 2) Click 'Send to Blender' in the GUI panel or type 'bn.to_blender()' in python console.") print(" 3) Switch to Blender window to see the model.") print("") print(" To visualize activity: ") print(" 1) Load model in NEURON") print(" 2) Click 'Prepare for Simulation'. During simulation, this will save compartment activity to be sent to Blender.") print(" 3) Run simulation (e.g. '')") print(" 4) Click 'Send to Blender' ") print(" 5) Switch to Blender window to see the model.") print("") print(" If you add cells or make changes to morphology, click 'Re-Gather Sections before 'Send'ing or 'Prepare'ing.") print("") print(" Blender basics:") print(" HOME key to zoom out and view the full scene") print(" Mouse wheel - zoom in/out") print(" Hold down and drag mouse middle button - rotate") print(" SHIFT + hold down and drag mouse middle button - pan view") print(" Right click on an object - select the object and see its name") print(" Numpad '.' key - to zoom in on a selected object") print("") print(" There are many great Blender tutorials online. ") print(" These are a good start:")
[docs] def to_blender(self, color_unique_names=True): """ A convenience method to send all groups of cells defined by self.groups property to Blender. The method first clears the Blender scene, sends the morphology, any activity, and NetConns, links them to the scene (shows), zooms out the camera to include all cells/sections, colors the sections based on their names, and sets the animation length based on h.tstop If called without creating any groups, it will create a default "all" group which contains all sections instantiated in NEURON :param color_unique_names: Whether to color the cell sections based on their names, gray otherwise :return: None """ self.enqueue_method("clear") self.send_model() self.enqueue_method('link_objects') self.enqueue_method('show_full_scene') if color_unique_names: self.enqueue_method('color_by_unique_materials') self.run_method('set_render_params', (0, self.get_num_frames()))
[docs] def refresh(self): """ A convenience menthod that will recreate the default "all" group and recreate all connections. It should be called after NEURON model has changed (added/modified sections). :return: None """ self.setup_default_group() self.setup_default_connections()
[docs] def get_num_frames(self): r""" Computes the number of frames to be shown in Blender to represent the simulation. It is equal to the maximum number of frames per ms of simulation x NEURON h.tstop :math:`t_{stop}*\max_{0 \leq g \leq n}(fps_{g})` :return: Number of animation frames """ max_num_frames_per_ms = max(self.groups[g]["frames_per_ms"] for g in self.groups.keys()) return max_num_frames_per_ms * self.h.tstop
[docs] def show_panel(self): """ Creates a NEURON window that shows the GUI widgets to perform basic model export operations """ self.h.xpanel('BlenderNEURON') self.h.xcheckbox('Include Cells', (self, 'include_morphology')) self.h.xcheckbox('Include Connections', (self, 'include_connections')) self.h.xcheckbox('Include Activity', (self, 'include_activity')) self.h.xlabel(" ") self.h.xbutton('Prepare For Simulation', self.prepare_for_collection) self.h.xbutton('Send To Blender', self.to_blender) self.h.xlabel(" ") self.h.xbutton('Re-Gather Sections', self.refresh) self.h.xlabel(" ") self.h.xlabel("Connection status:") self.h.xvarlabel(self.connectionStatus) self.h.xbutton('Test Connection', self.is_blender_ready) # self.h.xlabel('Progress:') # self.h.xvarlabel(self.progressNEURON) # self.h.xvarlabel(self.progressBlender) # self.h.xvarlabel(self.progressPercent) self.h.xpanel(500, 10)
[docs] def setup_defaults_if_needed(self): """ Checks if there are any cell groups or connections setup for export to Blender, creates defaults if not. See also: :any:`setup_default_group` :any:`setup_default_connections` """ if len(self.groups.values()) == 0 and self.include_morphology: self.setup_default_group() if len(self.connections) == 0 and self.include_connections: self.setup_default_connections()
[docs] def setup_default_connections(self): """ Sets up all NEURON NetCon's to be exported as synapses to Blender """ # Include all NetCon connections by default self.connections = self.h.NetCon # Connections will be rendered as segments connecting cells group = { 'name': "Synapses", 'color': [1, 1, 0], 'interaction_level': "Group", 'color_level': "Group", 'as_lines': False, 'circular_subdivisions': 4, 'segment_subdivisions': 1, 'smooth_sections': False, 'cells': {} } self.connection_data["Synapses"] = group
[docs] def setup_default_group(self): """ Sets up all NEURON sections and their 3d coordinates to be exported to Blender """ # By default, include all cells ('root sections') in the model all_cells = self.h.SectionList() all_cells.allroots() root_sections = [cell for cell in all_cells] if "all" in self.groups: group = self.groups["all"] # If group already exists, clear out previous section data group["cells"] = root_sections group["3d_data"]["cells"] = {} group['collection_times'] = [] group['collected_activity'] = {} else: self.create_cell_group("all", root_sections)
[docs] def create_cell_group(self, name, cells, options=None): """ Creates a cell group from a list of root sections. Each cell group can have different color and selection options. :param name: The name of the group of cells :param cells: a list of top level, "root" sections. The children of these sections will be exported :param options: The group can have the following options: **group['collect_activity']**: True/False, whether to collect the group section activity during simulation. **group['collect_variable']**: string e.g. 'v', the name of the section variable to collect. **group['collection_period_ms']**: int, e.g. 1, how often per simulator ms to collect activity 1=one datapoint per ms. **group['frames_per_ms']**: float, e.g. 2.0, how many Blender frames to use for each simulator ms. **group['spherize_soma_if_DeqL']**: True/False, whether to render sections that include "soma" in their names as spheres if their lengths and diameters are approximately equal. **group['3d_data']['color']**: 3-array, e.g. [1,1,1] for white, to specify the RGB values for the default color of all sections of the group. **group['3d_data']['interaction_level']**: one of "Group", "Cell", "Section" to specify the level at which sections of this group can be *interacted* with in Blender. "Group" creates one Blender object for the whole group, "Section" creates objects for each section. Use "Group" to maximize Blender performance, and "Section" to maximize debugging/interaction detail. **group['3d_data']['color_level']**: one of "Group", "Cell", "Section", or "Segment" to specify the level at which sections of this group should be *colored* in Blender. The difference is visible only when cell activity is included. The chosen value will have the following effects: *Group*: All sections will be colored based on the average value of collect_variable at the root sections of the group. Coarsest, fastest color method. Appropriate to visually approximate population level activity. *Cell*: Sections of each cell will be colored based on the value at the soma(0.5) (root) section. *Section*: Each section will be colored based on the value at the middle of each section. *Segment*: Each section segment (h.n3d()) will be colored based on the value at that segment. The most detailed, most computationaly demanding color method. Note: if NEURON xyz3d() points are defined, a "segment" in BlenderNEURON refers to n3d()-1 points. However, if no xyz3d() points are defined, number of BlenderNEURON "segments" = nseg in NEURON. BlenderNEURON will favor 3D point info over nseg when creating the Blender objects, however it will not alter the simulation. For example, if there are 10 3D points on a section, but nseg = 1, BlenderNEURON will show a 3D shape with 10 subdivisions, however all subdivisions will have the same color value because their values will come from the one compartment. **group['3d_data']['as_lines']**: True/False, whether to display sections as 0-diameter lines in Blender. Very fast, but will not render using Blender's "Render" tab. **group['3d_data']['segment_subdivisions']**: int > 1. e.g. 3, the number of subdivisions to use when rendering the segment cylinder. If "smooth_sections" (see below) is False, use value of 1 to reduce the number of Blender polygons. If True, larger values result in smoother branching angles. **group['3d_data']['circular_subdivisions']**: int > 4, e.g. 8, the number of circular "sides" to use when rendering the segment cylinder. Larger values provide rounder cylinder shape, but result in more polygons. **group['3d_data']['smooth_sections']**: True/False: whether to render sections as smooth bezier curves, instead of straight lines. True results in more visually appealing morphology, but requires more polygons depending on the 'segment_subdivisions' value (above). :return: The created group dictionary """ # Adjust level of detail based on cell count level = self.get_detail_level(len(cells)) # Create group based on default settings group = { 'cells': cells, 'collect_activity': True, 'collect_variable': 'v', 'collection_period_ms': 1, 'frames_per_ms': 2.0, 'spherize_soma_if_DeqL': True, '3d_data': { 'name': name, 'color': [1, 1, 1], 'interaction_level': level, 'color_level': level, 'as_lines': False, 'segment_subdivisions': 3, 'circular_subdivisions': 12, 'smooth_sections': True, 'cells': {} }, 'collection_times': [], 'collected_activity': {}, } # Set any custom options for the group BlenderNEURON.update_group(group, options) # Segment level interaction is not supported if group['3d_data']['interaction_level'] == 'Segment': group['3d_data']['interaction_level'] = 'Section' # Create collectors, if collecting activity for the group self.create_collector(group) self.groups[name] = group return group
[docs] def get_detail_level(self, cell_count): """ Uses a heuristic to select an appropriate level of detail based on the number of cells in simulation :param cell_count: The number of "root" sections instantiated in NEURON :return: One of "Group", "Cell", "Section", or "Segment" """ if cell_count <= 5: level = 'Segment' elif cell_count <= 25: level = 'Section' elif cell_count <= 100: level = 'Cell' else: level = 'Group' return level
[docs] def create_collector(self, group): """ Greates a pair of NetStim and NetCon which trigger an event to recursively collect the activity of the group segments. This method does nothing if group['collect_activity'] is False :param group: The group dictionary for which to create the collector """ if group['collect_activity']: collector_stim = self.h.NetStim(0.5) collector_stim.start = 0 collector_stim.interval = group['collection_period_ms'] collector_stim.number = 1e9 collector_stim.noise = 0 collector_con = self.h.NetCon(collector_stim, None) collector_con.record((self.collect_group, group['3d_data']['name'])) group["collector_stim"] = collector_stim group["collector_con"] = collector_con
[docs] def prepare_for_collection(self): """ Checks and creates a default group and its activity collectors """ self.setup_defaults_if_needed()
[docs] def run_method(self, name, *args, **kwargs): """ Synchronously requests and blocks while a BlenderNEURON addon method is executed in Blender :param name: The name of the BlenderNEURON addon method to call :param args: method parameters :param kwargs: This should be blank, as named parameters are not supported over XMLRPC :return: The value returned by the BlenderNEURON addon method """ return self.client.run_method(name, args, kwargs)
[docs] def enqueue_method(self, name, *args, **kwargs): """ Asynchronous version of run_method """ self.client.enqueue_method(name, args, kwargs)
[docs] def run_command(self, command_string): """ Synchronously runs a Python command within Blender's Python instance. This allows controlling/using Blender from NEURON/python. :param command_string: A python command. To include a return value, set a special variable 'return_value'. :return: None, but if return_value is set within the command, will return its value. """ return self.client.run_command(command_string)
[docs] def enqueue_command(self, command_string): """ Asynchronous version of :any:`run_command` """ self.client.enqueue_command(command_string)
[docs] def send_model(self): """ A convenience method to send the model morphology, connections, and activity data to Blender. After this method executes, BlenderNEURON addon method 'link_objects' needs to be called for the cells to become visible in Blender. See: :any:`to_blender` for details. Raises: Exception if communication with BlenderNEURON addon cannot be established """ if not self.is_blender_ready(): raise Exception( "Is Blender running and BlenderNEURON addon active? " "Could not communicate with Blender on " + self.IP + ":" + self.Port ) self.setup_defaults_if_needed() # Remove any previous model objects self.enqueue_method("clear") if self.include_morphology: self.send_morphology() if self.include_connections: self.send_cons() if self.include_activity: self.send_activity()
[docs] def is_blender_ready(self): """ Checks if communication with BlenderNEURON addon can be established at self.IP:self.Port :return: True if connection can be made, False otherwise """ try: self.connectionStatus[0] = 'Ready' return True except: self.connectionStatus[0] = 'Not Connected' return False
[docs] def send_morphology(self): """ Sends the cell morphology data of all defined self.groups to Blender """ for group in self.groups.values(): self.gather_group_coords(group) self.send_group(group)
[docs] def gather_group_coords(self, group): """ Recursively obtains the coordinates of all 3D points of the group sections :param group: the dictionary of the group :return: None """ cell_data = group['3d_data']['cells'] = {} spherize = group["spherize_soma_if_DeqL"] for root in group["cells"]: cell_name = root.cell().hname() if root.cell() is not None else cell_coords = self.get_cell_coords(root, spherize_if_DeqL=spherize) # Account for a cell having multiple roots if cell_name in cell_data: cell_data[cell_name].extend(cell_coords) else: cell_data[cell_name] = cell_coords
[docs] def get_coord_count(self, section): """ Obtains the number of 3D points defined for a section. If no points have been added, uses NEURON's define_shape method to automatically create them (will be equal to nseg). :param section: a reference to a NEURON section e.g. soma = h.Section() :return: The number of 3D points the section has """ coord_count = int(self.h.n3d(sec=section)) # Let NEURON create them if missing if coord_count == 0: self.h.define_shape(sec=section) coord_count = int(self.h.n3d(sec=section)) return coord_count
[docs] def shorten_name_if_needed(self, name, max_length=56): """ Gets a shortened name string suitable for use as a name for an object in Blender. Blender names must be <64 characters long If section name is too long, this method will truncate the string and replace it with an MD5 hash Also allows for up to 100,000 segments/materials per section :param name: The name of a NEURON object e.g. cell, group, section, segment :param max_length: The number of characters that will be kept before start of MD5 hash :return: Same or, if necessary, shortened name string, suitable for use as Blender object name """ result = name # 63 max, with two for []s and 5 for segment id = 56 if len(result) > max_length: return result[:max_length-17] + "#" + hashlib.md5(result.encode('utf-8')).hexdigest()[:16] return result
[docs] def get_cell_coords(self, section, result=None, spherize_if_DeqL=True): """ Recursively gathers the list of coordinates of a cell (root section) :param section: A reference to NEURON root section :param result: None, used internally :param spherize_if_DeqL: Whether to create a sphere instead of a cylinder for sections with "soma" in their names and which have equal lengths and diameters (within 0.1 um) :return: A list of dictionaries with section names, coordinates, and coordinate radii. Coords has the form of [x1,y1,z1,x2,y2,z2...], and radii [r1,r2,...] """ # Determine how many 3d points the section has coord_count = self.get_coord_count(section) # Collect the coordinates coords = [None]*coord_count*3 radii = [None]*coord_count for c in range(coord_count): ci = c*3 coords[ci] = self.h.x3d(c, sec=section) coords[ci+1] = self.h.y3d(c, sec=section) coords[ci+2] = self.h.z3d(c, sec=section) radii[c] = self.h.diam3d(c, sec=section) / 2.0 if result is None: result = [] sec_coords = { "name": self.shorten_name_if_needed(, "coords": coords, "radii": radii, } # Create spherical intermediate points if spherizing if spherize_if_DeqL and \ "soma" in and \ abs(section.diam - section.L) < 0.1: self.spherize_coords(sec_coords, length=section.L) result.append(sec_coords) children = section.children() for child in children: self.get_cell_coords(child, result, spherize_if_DeqL) return result
[docs] def spherize_coords(self, sec_coords, length, steps=7): """ Turns a cylindrical section 3D points into a 3D points of a sphere spanning the section length. This method assumes the section length and diameter are equal. :param sec_coords: A dictionary of section 3d coordinates. Same format as elements of array returned by :any:`get_cell_coords()` :param length: The length of the section :param steps: The number of intermediate subdivisions to use to approximate the sphere. More steps uses more polygons but results in more smooth sphere. :return: """ # Remove intermediate, co-linear points if len(sec_coords["radii"]) > 2: sec_coords["radii"] = [sec_coords["radii"][0], sec_coords["radii"][-1]] sec_coords["coords"] = sec_coords["coords"][0:3] + sec_coords["coords"][-3:] x1 = sec_coords["coords"][0] y1 = sec_coords["coords"][1] z1 = sec_coords["coords"][2] x2 = sec_coords["coords"][-3] y2 = sec_coords["coords"][-2] z2 = sec_coords["coords"][-1] range_x = x2 - x1 range_y = y2 - y1 range_z = z2 - z1 radius = sec_coords["radii"][0] # Length and diameter are same, so spherize the cylinder # by adding intermediate, spherical diameter points step_size = length / (steps + 1.0) for step in range(steps): dist_from_start = step_size + step*step_size dist_to_center = abs(radius-dist_from_start) step_radius = sqrt(radius**2-dist_to_center**2) fraction_along = dist_from_start / length step_x = x1 + range_x * fraction_along step_y = y1 + range_y * fraction_along step_z = z1 + range_z * fraction_along pt_idx = step+1 sec_coords["coords"][pt_idx*3:pt_idx*3] = [step_x, step_y, step_z] sec_coords["radii"].insert(pt_idx, step_radius) # Set the first and last points to 0 diam sec_coords["radii"][0] = 0 sec_coords["radii"][-1] = 0 sec_coords["spherical"] = True
[docs] def send_group(self, group): """ Sends the 3d morphology data of a group to Blender :param group: Reference to the group's dictionary """ data = group['3d_data'] self.enqueue_method("visualize_group", data)
[docs] def collect_group(self, group_name): """ Based on the group's color level, gathers the values of the group's collect_variable. This method is called at regular times during the simulation. See :any:`create_cell_group()` for details. :param group_name: The name of the group whose section values to measure and store :return: None """ group = self.groups[group_name] group["collection_times"].append(self.h.t) level = group['3d_data']["color_level"] #level = "Cell" # Recursively record from every segment of each section of each cell if level == 'Segment': for root in group["cells"]: self.collect_segments_recursive(root, group) # Recursively record from the middle of each section of each cell elif level == 'Section': for root in group["cells"]: self.collect_section(root, group, recursive = True) # Record from the middle of somas of each cell elif level == 'Cell': for root in group["cells"]: self.collect_section(root, group, recursive = False) # Record from the somas of each cell and compute their mean else: variable = group["collect_variable"] # Compute the mean of group cell somas value = 0.0 for soma in group["cells"]: value += getattr(soma(0.5), variable) value = value / len(group["cells"]) activity = group["collected_activity"] name = group_name + "Group" if name not in activity: activity[name] = [] activity[name].append(value)
[docs] def collect_segments_recursive(self, section, group): """ Recursively collects the values of segments of a group cell (root section). Segments are given sequential 0-based names similar to NEURON cells and sections. For example, TestCell[0].dend[3][4] refers to first TestCell, 4th dendrite, 5th segment. Segment order is determined by the order in which they appear in NEURON's xyz3d() function. :param section: A reference to a group root section :param group: reference to a group dictionary :return: None """ coordCount = self.get_coord_count(section) activity = group["collected_activity"] variable = group["collect_variable"] for i in range(1, coordCount): name = self.shorten_name_if_needed( + "[" + str(i - 1) + "]" startL = self.h.arc3d(i - 1, sec=section) endL = self.h.arc3d(i, sec=section) vectorPos = (endL + startL) / 2.0 / section.L value = getattr(section(vectorPos), variable) if name not in activity: activity[name] = [] activity[name].append(value) for child in section.children(): self.collect_segments_recursive(child, group)
[docs] def collect_section(self, section, group, recursive = True): """ Recursively collects the section midpoint values of a group's collect_variable (e.g. 'v') :param section: A root section of a group :param group: The group's dictionary :param recursive: Whether to collect child section values (otherwise stop at root/soma) :return: None """ activity = group["collected_activity"] variable = group["collect_variable"] if recursive: name = self.shorten_name_if_needed( else: name = str(section.cell()) value = getattr(section(0.5), variable) if name not in activity: activity[name] = [] activity[name].append(value) if recursive: for child in section.children(): self.collect_section(child, group, recursive)
[docs] def send_activity(self): """ Sends the collected group section/segment activity to Blender. The recorded activity values are compressed to remove co-linear points and are sent in batches to maximize performance. :return: """ for group in self.groups.values(): if "collected_activity" not in group: return frames_per_ms = group["frames_per_ms"] part_activities = group["collected_activity"] parts = part_activities.keys() times = group["collection_times"] payload = [] for part in parts: # Remove extra co-linear points reduced_times, reduced_values = self.simplify_activity(times, part_activities[part]) # Scale the times reduced_times = [t*frames_per_ms for t in reduced_times] payload.append({'name':part, 'times':reduced_times, 'activity':reduced_values}) # Buffered send if len(payload) > 1000: self.enqueue_method("set_segment_activities", payload) payload = [] self.enqueue_method("set_segment_activities", payload)
# TODO: this could benefit from cython
[docs] def simplify_activity(self, times, activity): """ Removes co-linear points from a time series of collected activity. Used to compress activity before sending to Blender. :param times: an array of times :param activity: an array of corresponding activity values :return: times and activity arrays with the co-linear points removed """ reduced = BlenderNEURON.rdp(zip(times, activity), self.activity_simplification_tolerance) return zip(*reduced)
[docs] def clear_activity(self): """ Removes collected activity values from all groups. Called at the start of simulation, using NEURON's FInitialize() method. :return: None """ for group in self.groups.values(): group['collection_times'] = [] group['collected_activity'] = {}
[docs] def send_cons(self): """ Gathers the start and end coordinates (if available) of all NetConn objects and sends them to Blender. :return: None """ cons = {} for i, con in enumerate(self.connections): pre = con.pre() post = con.syn() # If source is PointProcess if pre is not None: # A PointProcess with a segment if hasattr(pre, "get_segment"): pre_seg = pre.get_segment() # Skip if the PP doesn't have a segment else: continue else: pre_loc = con.preloc() # If source is a segment if pre_loc != -1.0: pre_seg = self.h.cas()(pre_loc) self.h.pop_section() # Skip if it's neither a PP nor a segment else: continue # Check if post is a PointProcess on a Section if post is None or hasattr(post, "get_segment") == False: continue pre_pos = self.get_coords_along_sec(pre_seg.sec, pre_seg.x) post_seg = post.get_segment() post_pos = self.get_coords_along_sec(post_seg.sec, post_seg.x) cons["NetCon["+str(i)+"]"] = [{ "name": "NetCon["+str(i)+"]", "coords": pre_pos + post_pos, "radii": [1,1] }] self.connection_data["Synapses"]["cells"] = cons self.enqueue_method("create_cons", self.connection_data["Synapses"])
[docs] def get_coords_along_sec(self, section, along): """ Gets the section 3d coordinate that is 0-1 fraction along from the begining of the section. :param section: reference to a NEURON section :param along: float, 0-1, refering to the fraction along the section :return: a tuple of (x,y,z) coordinate """ coord_count = self.h.n3d(sec=section) along_coords = (coord_count-1) * along start_coord_i = int(along_coords) along_start_coord = along_coords - start_coord_i if along_start_coord > 0: along_x = self.get_along_coord_dim("x", section, start_coord_i, along_start_coord) along_y = self.get_along_coord_dim("y", section, start_coord_i, along_start_coord) along_z = self.get_along_coord_dim("z", section, start_coord_i, along_start_coord) else: along_x = self.h.x3d(start_coord_i, sec=section) along_y = self.h.y3d(start_coord_i, sec=section) along_z = self.h.z3d(start_coord_i, sec=section) return (along_x,along_y,along_z)
[docs] def get_along_coord_dim(self, dim, section, coord_i, along_start_coord): dim = getattr(self.h,dim+"3d") start = dim(coord_i, sec=section) end = dim(coord_i + 1, sec=section) length = end - start along = start + along_start_coord * length return along
[docs] @staticmethod def distance(a, b): """ Returns the distance between two points defined as 2-lists/tuples """ return sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)
[docs] @staticmethod def point_line_distance(point, start, end): if (start == end): return BlenderNEURON.distance(point, start) else: n = abs((end[0] - start[0]) * (start[1] - point[1]) - (start[0] - point[0]) * (end[1] - start[1])) d = sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2) return n / d
[docs] @staticmethod def rdp(points, epsilon): """ Reduces a series of points to a simplified version that loses detail, but maintains the general shape of the series. Ramer-Douglas-Peucker algorithm adapted from: :param points: An array of (x,y) tuples to simplify :param epsilon: The maximum distance that points can deviate from a line and be removed :return: A simplified array of (x,y) tuples """ dmax = 0.0 index = 0 for i in range(1, len(points) - 1): d = BlenderNEURON.point_line_distance(points[i], points[0], points[-1]) if d > dmax: index = i dmax = d if dmax >= epsilon: results = BlenderNEURON.rdp(points[:index + 1], epsilon)[:-1] + BlenderNEURON.rdp(points[index:], epsilon) else: results = [points[0], points[-1]] return results
[docs] @staticmethod def update_group(group, options): """ Updates a dictionary with another dictionary, replacing values of matching keys :param group: dictionary to update :param options: dictionary with which to update the first dictionary :return: an updated first dictionary """ if options is None: return group d = group u = options for k, v in u.iteritems(): if isinstance(v, collections.Mapping): d[k] = update(d.get(k, {}), v) else: d[k] = v return d